首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4557篇
  免费   444篇
  国内免费   592篇
  2024年   10篇
  2023年   80篇
  2022年   125篇
  2021年   284篇
  2020年   234篇
  2019年   299篇
  2018年   218篇
  2017年   177篇
  2016年   202篇
  2015年   300篇
  2014年   347篇
  2013年   341篇
  2012年   455篇
  2011年   385篇
  2010年   241篇
  2009年   222篇
  2008年   217篇
  2007年   192篇
  2006年   153篇
  2005年   151篇
  2004年   129篇
  2003年   127篇
  2002年   105篇
  2001年   91篇
  2000年   74篇
  1999年   55篇
  1998年   39篇
  1997年   35篇
  1996年   28篇
  1995年   28篇
  1994年   24篇
  1993年   20篇
  1992年   25篇
  1991年   17篇
  1990年   19篇
  1989年   15篇
  1988年   12篇
  1987年   7篇
  1985年   5篇
  1983年   12篇
  1982年   5篇
  1981年   6篇
  1979年   5篇
  1977年   6篇
  1973年   6篇
  1972年   11篇
  1971年   7篇
  1970年   7篇
  1968年   8篇
  1967年   4篇
排序方式: 共有5593条查询结果,搜索用时 31 毫秒
71.
72.
Auxin is a crucial phytohormone, controlling multiple aspects of plant growth and responses to the changing environment. However, the role of local auxin biosynthesis in specific developmental programs remains unknown in crops. This study characterized the rice tillering and small grain 1 (tsg1) mutant, which has more tillers but a smaller panicle and grain size resulting from a reduction in endogenous auxin. TSG1 encodes a tryptophan aminotransferase that is allelic to the FISH BONE (FIB) gene. The tsg1 mutant showed hypersensitivity to indole‐3‐acetic acid and the competitive inhibitor of aminotransferase, L‐kynurenine. TSG1 knockout resulted in an increased tiller number but reduction in grain number and size, and decrease in height. Meanwhile, deletion of the TSG1 homologs OsTAR1, OsTARL1, and OsTARL2 caused no obvious changes, although the phenotype of the TSG1/OsTAR1 double mutant was intensified and infertile, suggesting gene redundancy in the rice tryptophan aminotransferase family. Interestingly, TSG1 and OsTAR1, but not OsTARL1 and OsTARL2, displayed marked aminotransferase activity. Meanwhile, subcellular localization was identified as the endoplasmic reticulum, while phylogenetic analysis revealed functional divergence of TSG1 and OsTAR1 from OsTARL1 and OsTARL2. These findings suggest that TSG1 dominates the tryptophan aminotransferase family, playing a prominent role in local auxin biosynthesis in rice.  相似文献   
73.
章先  何珂  黄志伟  单颖  曹统  谢珲  宋厚辉 《菌物学报》2020,39(3):599-609
赭曲霉毒素(ochratoxins)主要是由青霉菌Penicillium和曲霉菌Aspergillus产生的有毒次级代谢产物,常见于发霉或发酵的农产品中,其中赭曲霉毒素A(ochratoxin A,OTA)毒性最强且最为普遍。OTA是粮食作物和饲料的重要污染物,在加工、储存或运输过程中均可产生,具有肾毒性和免疫毒性,可通过蓄积作用发挥毒性效应,对人类和动物健康造成严重威胁。本研究通过将OTA单克隆抗体包被于纳米磁珠(magnetic nanoparticles,MNPs)表面,获得具有免疫活性的磁珠抗体复合物(MNPs-Anti OTA),并制备生物素标记的偶联抗原OTA-BSA-Bio,后续采用链酶亲和素标记的纳米金颗粒(Strep-HRP-AuNPs)催化底物进行信号检测,最终建立了OTA高灵敏检测方法(MNPs-bs-AuNPs-ELISA)。在最优条件下,经计算该方法检测下限(IC10)为0.01ng/mL,检测区间(IC20-IC80)为0.02-0.73ng/mL,半数抑制率(IC50)为0.13ng/mL。与OTA类似物OTB、OTC交叉反应性为4.3%和8.1%,对其他常见真菌毒素AFB1、ZEN、FB1、DON、CIT和PAT均无交叉反应。玉米、面粉和大豆样本中的加标回收率可达85.6%-115.7%,对天然样本中OTA含量的检测结果表明,该方法与LC-MS/MS相关性良好。本研究建立的MNPs-bs-AuNPs-ELISA可满足谷物及饲料样本中OTA的快速、高灵敏度定量检测,成本较低,具有很好的应用前景。  相似文献   
74.
75.
This study aimed to explore new therapeutic targets to improve the survival rate of patients with oral squamous cell carcinoma (OSCC).MiR-210-3p, EphrinA3 and EMT related indices were evaluated in OSCC tissues and cell lines. In addition, the relationship between differential EphrinA3 expression and tumour progression was explored through molecular biology techniques, in vitro functional experiments and tumour xenotransplantation models. The expression of EphrinA3 (rs = −0.719, P < .05) and E-cadherin (rs = −0.856, P < .05) was negatively correlated with the pathological grading in OSCC tissues. Protein clustering shows EphrinA3 may be associated with tumour progression. EphrinA3 also can regulate the biological behaviour of oral cancer cells. And it regulates the EMT by the PI3K/AKT signalling pathway. MiR-210-3p targeted the gen EFNA3. Up-regulation of miR-210-3p expression can decrease the expression of EphrinA3 and further to influence the biological behaviour of OSCC. The miR-210-3p-EphrinA3-PI3K/AKT signalling axis plays an important role in the progress of OSCC. EphrinA3 may serve as a novel target for oral cancer treatment.  相似文献   
76.
77.
Microtubule actin cross‐linking factor 1 (Macf1) is a spectraplakin family member known to regulate cytoskeletal dynamics, cell migration, neuronal growth and cell signal transduction. We previously demonstrated that knockdown of Macf1 inhibited the differentiation of MC3T3‐E1 cell line. However, whether Macf1 could regulate bone formation in vivo is unclear. To study the function and mechanism of Macf1 in bone formation and osteogenic differentiation, we established osteoblast‐specific Osterix (Osx) promoter‐driven Macf1 conditional knockout mice (Macf1f/fOsx‐Cre). The Macf1f/fOsx‐Cre mice displayed delayed ossification and decreased bone mass. Morphological and mechanical studies showed deteriorated trabecular microarchitecture and impaired biomechanical strength of femur in Macf1f/fOsx‐Cre mice. In addition, the differentiation of primary osteoblasts isolated from calvaria was inhibited in Macf1f/fOsx‐Cre mice. Deficiency of Macf1 in primary osteoblasts inhibited the expression of osteogenic marker genes (Col1, Runx2 and Alp) and the number of mineralized nodules. Furthermore, deficiency of Macf1 attenuated Bmp2/Smad/Runx2 signalling in primary osteoblasts of Macf1f/fOsx‐Cre mice. Together, these results indicated that Macf1 plays a significant role in bone formation and osteoblast differentiation by regulating Bmp2/Smad/Runx2 pathway, suggesting that Macf1 might be a therapeutic target for bone disease.  相似文献   
78.
CircPRTM5 is associated with cell proliferation and migration in many kinds of malignancies. However, the functions and mechanisms of CircPRTM5 in CRC progression remain unclear. We explored the role and the mechanisms of CircPRTM5 in the development of CRC. Tissues of CRC patients and matched adjacent non-tumour tissues were collected to evaluate the expression of CircPRTM5. The expression of CircPRTM5 in CRC tissues was significantly higher than that in adjacent tissues. The biological functions of CircPRTM5 in CRC were determined by overexpression and down-regulation of CircPRTM5 in CRC cells in vitro and in vivo. The results indicate that knockdown of CircPRTM5 can significantly inhibit the proliferation of CRC cells. The potential mechanisms of CircPRTM5 in CRC development were identified by RT-qPCR, Western blotting analysis and luciferase reporter assay. CircPRTM5 competitively regulates the expression of E2F3 by capillary adsorption of miR-377. CircPRMT5 regulates CRC proliferation by regulating the expression of E2F3, which affects the expression of the cell cycle-associated proteins cyclinD1 and CDK2. CircPRTM5 exerts critical regulatory role in CRC progression by sponging miR-377 to induce E2F3 expression.  相似文献   
79.
Cardiovascular complications are leading causes of morbidity and mortality in patients with chronic kidney disease (CKD). CKD significantly affects cardiac calcium (Ca2+) regulation, but the underlying mechanisms are not clear. The present study investigated the modulation of Ca2+ homeostasis in CKD mice. Echocardiography revealed impaired fractional shortening (FS) and stroke volume (SV) in CKD mice. Electrocardiography showed that CKD mice exhibited longer QT interval, corrected QT (QTc) prolongation, faster spontaneous activities, shorter action potential duration (APD) and increased ventricle arrhythmogenesis, and ranolazine (10 µmol/L) blocked these effects. Conventional microelectrodes and the Fluo-3 fluorometric ratio techniques indicated that CKD ventricular cardiomyocytes exhibited higher Ca2+ decay time, Ca2+ sparks, and Ca2+ leakage but lower [Ca2+]i transients and sarcoplasmic reticulum Ca2+ contents. The CaMKII inhibitor KN93 and ranolazine (RAN; late sodium current inhibitor) reversed the deterioration in Ca2+ handling. Western blots revealed that CKD ventricles exhibited higher phosphorylated RyR2 and CaMKII and reduced phosphorylated SERCA2 and SERCA2 and the ratio of PLB-Thr17 to PLB. In conclusions, the modulation of CaMKII, PLB and late Na+ current in CKD significantly altered cardiac Ca2+ regulation and electrophysiological characteristics. These findings may apply on future clinical therapies.  相似文献   
80.
Under the microenvironment, tumour progression is substantially affected by cell‐cell communication. In spite of the mediating effect of extracellular nanovesicles (EVs) on cell‐cell communication by packaging into circRNAs, the effect of EVs circRNA hsa_circ_0000190 (circ‐0000190) in osteosarcoma is still not clear. Circ‐0000190 expressions in tissues and EVs from plasma were compared between osteosarcoma patients and controls. Thereafter, receiver operating characteristic (ROC) curve was drawn and area under the curve was calculated to examine whether the diagnostic results were accurate, and the effect of EVs circ‐0000190 was dug out via the determination of cell phenotypes and animal assays. Results showed circ‐0000190 exhibited an obvious reduction in EVs and tissues of osteosarcoma patients (P < .05). It was also discovered that EVs encapsulated the majority of circ‐0000190, and EVs‐encapsulated circ‐0000190 could be applied to make a distinction between osteosarcoma patients and controls. Besides, EVs circ‐0000190 in osteosarcoma cells transported from normal cells weakened the capacities of osteosarcoma cells to migrate, proliferate and invade, so as to block their biological malignant behaviours (P < .05). In addition, under the action of EVs circ‐0000190, tumour growth was impeded and the expression of TET1 was inhibited via the competitive binding to miR‐767‐5p. In all, EVs circ‐0000190 has a good prospect as it can be regarded as a new biomarker for detecting osteosarcoma. EVs circ‐0000190 transported from normal cells to osteosarcoma cells impeded the in vitro and in vivo development of osteosarcoma, implying that EVs circ‐0000190 exerts an effect on communication between normal cells and osteosarcoma cells in the carcinogenesis process of osteosarcoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号